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Abstract 48 

Lasting effects of a Cascadia earthquake in 1700 were documented during surveys of 49 

Chinookan tidelands near the mouth of the Columbia River between 1805 and 1868. The effects 50 

resemble estuarine consequences, near Anchorage, of the 1964 Alaska earthquake: fatal 51 

drowning of subsided meadows and forests by post-earthquake tides, rebirth of marshes and 52 

forests through post-earthquake sedimentation and uplift. Chinookan remains of killed forests 53 

were recorded by James Graham Cooper, John J. Lowell, and Cleveland Rockwell. Cooper, 54 

attached to a railroad survey and the Smithsonian Institution, wrote of redcedar stumps and 55 

trunks standing dead in tidal marshes of Shoalwater (now Willapa) Bay. Two such snags served 56 

as bearing trees for Lowell as he platted a Shoalwater Bay township under contract with the 57 

General Land Office. Rockwell, of the U. S. Coast Survey, flecked landward edges of tidal flats 58 

west of Astoria with symbols that evoke remains of a bygone spruce forest. The Lewis and Clark 59 

Expedition, while in that area in 1805–1806, mapped and puzzled over tideland vegetation that 60 

post-1700 succession helps explain.  61 

 62 

Keywords: earthquake, western redcedar, Sitka spruce, historical ecology 63 

Introduction 64 

The plate-tectonics revolution of the 1960s fostered modern views of Northwest 65 

earthquake and tsunami hazards. The Cascadia Subduction Zone, where an oceanic plate 66 

descends beneath the continental margin from southern British Columbia to northern California 67 

(Figure 1), is recognized today as a source of very large earthquakes and attending tsunamis 68 

(Thompson 2011, Doughton 2013, Henderson 2014, Walton et al. 2021). Their geological traces 69 

correspond to accounts of shaking and flooding that Native peoples experienced a few centuries 70 

ago (Ludwin et al. 2005, Thrush and Ludwin 2007). In that era, a Cascadia tsunami encountered 71 

remains of a Manila galleon that had been wrecked on the Oregon coast in 1693 or 1694 (La 72 

Follette et al. 2018), and a Pacific Ocean tsunami of remote origin caused documented flooding 73 

in Japan that dates a parent earthquake in Cascadia to 26 January 1700 (Satake et al. 1996, 2003, 74 

Atwater et al. 2015). 75 

From this modern perspective, ecological effects of a 1700 Cascadia earthquake can be 76 

spotted in field notes, reports, and maps from nineteenth-century surveys of Chinookan tidelands 77 

of the Columbia River and Shoalwater Bay. The surveys encountered subfossil trees and 78 

vegetated wetlands that resemble Anchorage-area effects of the 1964 Alaska earthquake, and 79 

which can be ascribed today to land-level change and ecological succession (Figure 2).   80 

Earthquake cycles and their ecological effects 81 

Subduction can change land levels in cycles (Plafker 1969:64–66, Thatcher 1984). Two 82 

tectonic plates, one descending beneath the other, are stuck together on a shallow part of the 83 

plate-boundary fault, toward which the two plates are moving slowly (Figure 2f). The overriding 84 

plate bulges behind this part of the fault. During an earthquake, the bulge collapses as fault 85 

rupture allows the leading edge of the plate to lurch seaward. The bulge forms anew in a 86 

deformation cycle that repeats. The cycle follows the elastic rebound theory, originally proposed 87 

to explain horizontal displacement in the 1906 San Francisco earthquake (Reid 1910:17–26).  88 

Lowland trees may record subduction ups and downs. In general terms, a forest may 89 
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colonize emerging tidelands between earthquakes, and the trees may die from tidal submergence 90 

soon after the land falls during an earthquake (Figures 2a–2e). In detail these effects vary with 91 

salinity, tree species, and sedimentation rate. Raising tidelands between earthquakes helps forests 92 

spread downstream along salinity gradients. Conversely, lowering land during an earthquake 93 

raises salinity in a tidal stream by enlarging the tidal prism that the stream dilutes. Differential 94 

decay allows growth-position remains of one tree species to outlast those of another. Stumps and 95 

roots persist most reliably where soon buried by tidal deposits. Tidal deposition, by rebuilding 96 

land, hastens the establishment of new trees among or above the remains of drowned ones—first 97 

in freshwater tidelands, later downstream where brackish marshes emerge through gradual 98 

tectonic uplift.  99 

The examples reviewed below include two new findings about tree death from tidal 100 

submergence after the 1964 Alaska earthquake. New radiocarbon ages confirm that a victim-101 

spruce root put on its final complete ring during the last of the pre-earthquake growing seasons, 102 

while earlywood outside that ring shows that the root briefly lived on.    103 

1964 Alaska earthquake 104 

Subduction warped south-central Alaska during an earthquake of magnitude 9.2 on 27 105 

March 1964. Plafker (1969) mapped a mainly offshore zone of uplift flanked by a mostly 106 

onshore downwarp, each more than 700 km long (Figure 1a). He concluded that tens of meters of 107 

regional displacement on a gently landward-dipping fault had raised areas above the fault rupture 108 

while stretching areas behind it—extension that downwarped land by as much as 2.3 m (Figure 109 

2f). Low-angle faulting on this grand scale, like plate tectonics itself, had yet to be named in 110 

1964. But “subduction” would soon denote the descent of one tectonic plate beneath another 111 

(White et al. 1970, Dickinson 1971). 112 

Lowlands at Portage, outside of Anchorage, displayed estuarine effects of the 1964 113 

downwarp. There the much of the land dropped 2 m in all—1.5 m by tectonic deformation, and 114 

another 0.5 m by local settlement from shaking-induced compaction. Ensuing tides drowned a 115 

town, nearby meadows, and stands of spruce (Picea) and cottonwood (Populus), while also 116 

bringing in sand and silt that built up around the decaying remains of buildings, shrubs, and trees 117 

(McCulloch and Bonilla 1970:81–85, Ovenshine et al. 1976). Since the middle 1980s, this 118 

Alaskan example of tidal death and burial from coseismic subsidence has served as a modern 119 

analog for identifying prehistoric earthquakes in Cascadia and for dating them with uncommon 120 

geological precision (Atwater et al. 2015:14–17, 24–25, 96–97, Nelson et al. 2021). 121 

With Cascadia dating in mind, we sampled bark-bearing roots of a 1964 spruce victim 122 

near Portage (Figure 3). Its roots were exposed in 1991 in an eroding bank of the tidal 123 

Twentymile River (Figures 3a, 3b). Sanded cross-sections revealed wide growth rings and an 124 

outermost ring limited to thin-walled earlywood cells (Figures 3c, 3d). Radiocarbon ages were 125 

measured on earlywood of the last seven of the complete rings (A–G, Figures 3c, 3f). The ages 126 

track a doubling in atmospheric radiocarbon activity that took place during the decade before 127 

1964 (Figure 3g). This doubling results from nuclear-bomb tests (Higuchi 2020), and it 128 

registered as a radiocarbon spike in annual growth rings of North American trees (Quarta et al. 129 

2005, Lardie Gaylord et al. 2019). The graphical fit of the Portage spruce ages in Figure 3g is 130 

confirmed numerically in Table 1. The results uniquely assign the outermost complete ring (A) 131 

to 1963, while its fringe of earlywood implies post-earthquake survival into the first months of 132 

the 1964 growing season (Figures 3d and 3e). 133 
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Effects of the 1964 earthquake continued at Portage through natural ecological 134 

restoration. Tidal flats were succeeded by tidal marshes on which new spruce and cottonwood 135 

became established beside the decaying above-ground trunks of pre-earthquake trees (Bartsch-136 

Winkler and Garrow 1982, Atwater et al. 2001). (Figure 2a). The succession was driven by 137 

initially rapid sedimentation in the 1960s and early 1970s (Ovenshine et al. 1976), and 138 

secondarily by slow uplift that has been ascribed primarily to from glacial unloading (Huang et 139 

al. 2020).  140 

1700 Cascadia earthquake 141 

Much as at Portage, earthquake geology in Cascadia includes remains of tidally drowned 142 

marshes and forests. Roots of Sitka spruce (Picea sitchensis (Bong) Carrière) and trunks of 143 

western redcedar (Thuja plicata Donn. ex D. Don) are particularly abundant at Copalis River, 144 

Grays Harbor, and Willapa Bay in Washington, and along the lower Columbia River in 145 

Washington and Oregon (Figures 4a–4c). Both species live today in tidal wetlands of the mainly 146 

freshwater reaches of these estuaries (Franklin and Dyrness 1973:295, Benson et al. 2001, 147 

Johnson and Simenstad 2015). There, tidal forests are dominated by spruce but locally contain 148 

redcedar—on fallen logs and natural levees, and at transitions to floodplains. 149 

Trees dead and living contributed to dating of the most recent great Cascadia earthquake 150 

along the southern Washington coast. Radiocarbon analyses of subfossil spruce roots bracket this 151 

earthquake between 1680 and 1720 C.E. (Atwater et al. 1991, Nelson et al. 1995). Among eight 152 

of the subfossil redcedar dated by ring-width pattern matching in southern coastal Washington, 153 

roots of seven died in the dormant months of 1699–1700; in a discrepant eighth, a root draped on 154 

a log lived into 1708 (Figures 2b, 4b; Yamaguchi et al. 1997). Narrow rings attest to stress 155 

during the first decade after 1700 in living tideland old-growth—in spruce with heavy limbs and 156 

wind-broken tops at three of the estuaries, and in one redcedar along the Columbia River at Blind 157 

Slough, (Figures 2e, 4d; Jacoby et al. 1997). Tidal forests of all four estuaries were almost 158 

entirely reborn after 1700, as judged from ring counts in 146 additional living spruce (Figure 2d; 159 

Benson et al. 2001, Atwater 2020: table 15). All this evidence is consistent with 26 January 1700 160 

as the date when the Cascadia plate boundary ruptured along its entire 1,100-km length in one 161 

giant earthquake or in part of a swift series of lesser shocks (Satake et al. 2003, Melgar 2021). 162 

Although trees died effects of dormant-season subsidence in Cascadia, many likely 163 

managed to continue growing at first, much like the Portage tree in Figure 3. An incomplete 164 

outermost ring fringes roots of six out of ten subfossil spruce stumps sampled from tidal banks of 165 

the Copalis River and Willapa Bay (Atwater and Yamaguchi 1991: example in their Fig. 3B), 166 

and spruce-root death from post-earthquake tides at Humboldt Bay, California, ranged across 167 

four years (Jacoby et al. 1995). Already tolerant of brackish water, Sitka spruce may at first resist 168 

saltwater poisoning because, in winter, Northwest conifers are at maximum water storage and are 169 

taking up little soil water (Waring and Franklin 1979: their Figures 3 and 5). Although saltwater 170 

can kill Sitka spruce (Wang et al. 2019), a tree may initially respond to saltwater stress much as 171 

it would to drought (Tucker and Pearl 2021), and physiological responses to drought include 172 

resource allocation to roots (Gessler et al. 2017). There is a remote possibility that earlywood 173 

instead records a wet autumn after months of summer drought—a growth pattern that has been 174 

observed in coastal pines (Vieira et al. 2015: their Fig. 2). 175 

Indigenous science of Willapa Bay and the lower Columbia River surely would have 176 

mentioned, during the 1700s, landscape changes from post-earthquake tides. Travel by canoe 177 
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among persistent ghost forests, such as the dead redcedar grove in Figure 5, would have 178 

reinforced Chinookan counterparts to a Yurok (northern California) story in which Earthquake, 179 

having lowered prairie into the sea, exclaims “Yaha! The brush sticks out" (Kroeber 1976:460, 180 

Carver 1998:18). In addition, oral history may have identified pre-earthquake landmarks that 181 

post-earthquake tides drowned, such as riparian camps and fish weirs at Willapa Bay (Cole et al. 182 

1996, Atwater and Hemphill-Haley 1997:32, 76, Losey 2010). Although no 1700 earthquake or 183 

tsunami is evident among published Chinookan stories, nnearly all those stories were collected in 184 

1890 or later (Boas 1894, Ray 1938, Gibbs [1865] 1955, [1865] 1956, Jacobs 1959, 1962:94–95, 185 

Hymes and Seaburg 2013)—after epidemics that reduced Native populations along the lower 186 

Columbia River to roughly 10 percent of their pre-1774 numbers (Boyd 1999: Tables 3, 15–17). 187 

Nineteenth-century surveys 188 

This epidemic era overlapped with early documentation of earthquake evidence as  189 

attributes of Chinookan tidelands. The Lewis and Clark Expedition, in 1805–1806, noted 190 

vegetation patterns that can be tied today to post-earthquake succession; later surveys, in 1854–191 

1868, recorded upright remains of killed trees in tidal marshes and tidal flats. In each instance, 192 

mandates unrelated to earthquakes led to observations that can now be tied to seismology.  193 

Presidential directives and national claims 194 

A well-known letter from Thomas Jefferson (1803) set scientific objectives for the Lewis 195 

and Clark Expedition. These aligned with the President’s personal scientific interests (Cutright 196 

[1969] 2003:2–9) and, more fundamentally, with a drive to expand the United States westward 197 

(Goetzmann 1966:3–6). The young nation was then vying with Spain, Russia, and Great Britain 198 

over territorial rights to the Pacific Northwest. Under legal traditions deeply rooted in Europe 199 

(Williams 1990), the American claim rested on Robert Gray’s 1792 nominal discovery of the 200 

mouth of the Columbia River.  201 

The Lewis and Clark Expedition went beyond Gray’s discovery through acts of 202 

possession—not just by building and occupying Fort Clatsop (Figure 6), but also by making 203 

scientific observations in its vicinity (Miller 2006:3, 111–112), and by recording them throughly 204 

in maps (Clark 1806) and journals (Lewis et al. [1803–1806] 2005). Cited below, in relation to 205 

Cascadia earthquake history, are Expedition findings about tidal wetlands and Sitka spruce. 206 

Transcontinental rails and museum collections 207 

The United States Congress, in 1853, funded assessments of four competing swaths for 208 

the nation’s first transcontinental railroad. The competition was to hinge in part on natural 209 

resources the four surveys encountered (Goetzmann 1959:262–275). A northern survey, from 210 

Minnesota to Puget Sound, was led enthusiastically by Issac Ingalls Stevens (1818–1862), 211 

Washington’s first territorial governor (Richards 2016:102). 212 

Western surveys were then providing specimens of plants, animals, and rocks to the 213 

National Museum in the Smithsonian Institution. The museum curator, Spencer Fullerton Baird 214 

(1823–1887), in 1852–1854 “was receiving materials and information from twenty-six separate 215 

expeditions” (Rivinus and Youssef 1992:85). As a naturalist for the Stevens survey, Baird 216 

recommended a young physician, James Graham Cooper (1830–1902) (Coan 1981:21). 217 

Stevens assigned Cooper to the survey’s western division, under George McClellan. 218 
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George Gibbs, prominent in “some of the leading intellectual concerns of nineteenth century 219 

America” (Beckham 1969:viii), joined as ethnologist and geologist. The McClellan party ranged 220 

mainly east of the Cascade Range in summer and autumn of 1853, then disbanded (Overmeyer 221 

1941).  222 

Cooper remained in Washington Territory as a mostly self-funded naturalist into October 223 

of 1855. He based himself at Shoalwater Bay, making ends meet as a physician and storekeeper, 224 

and residing mainly in the cabin of an oysterman, Charles Russell (Figure 5c). Journals (Cooper 225 

1853–1854, 1855–1856) and a manuscript (Cooper 1856) provide unpublished records his stay.  226 

Published monographs from the four railroad surveys assembled encyclopedic 227 

descriptions of the American West (Goetzmann 1959: 336). Among them were natural-history 228 

reports that Cooper finalized in 1857–1860, largely while in Washington, D. C. (Coan 1981:10, 229 

11, 86). There he participated in a naturalist’s club under Baird’s tutelage (Rivinus and Youssef 230 

1992:94). The 1856 manuscript and a railroad-survey report (Cooper 1860) both tout western 231 

redcedar as a natural resource. In a quote below, as proof that its wood resists decay, Cooper 232 

cites redcedar trunks standing dead in tidal marshes of Shoalwater Bay. 233 

Gridded townships and Indian lands 234 

Westward expansion of the United States required land grids to which settlers’ claims 235 

and purchases could be tied. The grids established in Washington Territory were surveyed by 236 

contractors to the General Land Office (White 1983, Riddle 2010). The GLO instructed 237 

contractors to monument corners of sections and quarter-sections, to measure bearings and 238 

distances from corner monuments to scribed trees, and to document major changes in vegetation 239 

along section lines (Moore 1851). 240 

John J. Lowell (1823–1856) headed contract surveys of two Shoalwater Bay townships in 241 

autumn of 1855. This was Chinookan land the United States had not purchased; treaties of 1854–242 

1855 had recently extinguished Indian title to much of Washington Territory but not around 243 

Shoalwater Bay (Ruby and Brown 1976:224–231, Fisher and Jetté 2013). Another surveyor 244 

submitted the notes and plats (Lowell 1856a, 1856b) after Lowell, during Indian resistance, 245 

drowned as a military messenger (Olson 2018:238).  246 

Transcribed Lowell notes cited below locate a quarter-section corner with respect to a 247 

pair of redcedar trunks in a tidal marsh. Also cited is a vegetation change by which these bearing 248 

trees lacked foliage. 249 

Career topographer along a Northwest artery 250 

The U. S. Coast Survey achieved eminence under Alexander Dalles Bache, its director 251 

between 1843 and 1867 (Odgers 1947). Bache himself identified a Japanese source for an 1854 252 

tsunami recorded by California tide gauges (Bache 1856, Kusumoto et al. 2022). The agency’s 253 

early Northwest work (Vouri 2016), begun while I. I. Stevens was Bache’s deputy, included 254 

charting of Shoalwater Bay in 1852 and 1855 under James Alden (Hydrographic party under 255 

command of Lieut James Alden 1852, Hydrographic party under the command of Cmdr James 256 

Alden 1855).  257 

Cleveland Rockwell joined the Coast Survey as a teenager in 1856. A biography tells of 258 

his mentoring by Bache, his topographic service with the Union Army, and his eventual acclaim 259 

as a landscape painter (Stenzel 1972). Rockwell embarked in 1868 upon topographic mapping 260 

along the tidal Columbia River. Across most of two decades he surveyed—at a map scale of 1 261 
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mm to 10 m—shorelines, wetland vegetation, and riparian land use of this Northwest artery 262 

(Thomas 1983, Graves et al. 1995). Available today as sharp color scans are the three 1:10,000-263 

scale topographic sheets used below—T-1112 (Rockwell and Sengteller 1868a), T-1123 264 

(Rockwell and Sengteller 1868b), and T-1138 (Rockwell 1869). 265 

Coast Survey standards of Rockwell’s time called for "features of peculiar character” on 266 

tidal flats to be represented by imitation (Whiting 1861:222). Of particular concern were 267 

obstacles in the water (Shalowitz 1964:188). Cited below are Rockwell symbols that likely 268 

represent a discontinuous fringe of subfossil spruce on tidal flats west of Astoria. Also noted, as 269 

an indicator of post-earthquake succession, are conifers he depicted in tidal wetlands. 270 

Ecological anomalies 271 

Drowned redcedar 272 

Redcedar standing in Shoalwater Bay tidal marshes provided Cooper with a natural 273 

example of resistance to decay: 274 

On the salt meadows about Shoalwater Bay dead trees of this species are standing sometimes in 275 

groves, whose age it would almost impossible to tell. They must have grown when the surface 276 

was above salt water mark, as they are still abundant along the fresh borders of the meadows, 277 

together with other trees. But a gradual sinking of the land, still going on, has caused the tide to 278 

overflow and then killed the forests of which these Cedars are the only remains. Their wood is 279 

perfectly sound and so well seasoned as to be the very best of the kind. It is intensively used in 280 

that vicinity (Cooper 1856:27, 1860:22 contains similar text). 281 

Cooper’s Shoalwater journals identify but one instance in which he observed a redcedar 282 

ghost forest firsthand. Coming upon the bay for the first time, Cooper (1853–1854:76) noted that 283 

“stumps of Cedar stand on the meadows.” These stumps likely stood in a tidal marsh near 284 

historical Tarlatt (location, Figure 4b). Cooper had just crossed over from the Columbia by way 285 

of an upland portage described as an adventure (Swan 1857:239–241) and plotted on a GLO plat 286 

(Gile 1859). Cooper’s 1854 notes identify this portage with a “Mr. M—” (March 14) and with 287 

“Martin” (August 28)—evidently Thomas Martin, who operated a Tarlatt post office in 1854–288 

1855 (Secretary of State 1855:395, Weathers [1989] 2018). Tidal marshes bordered Tarlatt 289 

Slough into the 1870s (Baker’s Slough of Gilbert 1873) but have since been diked and plowed 290 

(Allen 2003). 291 

Shoalwater Bay companions may have told Cooper of additional ghost forests to which 292 

his 1856 manuscript and 1860 report allude. Russell, his primary host, was regarded by Alden 293 

(1856), of the Coast Survey, as “a pioneer in these quarters.” An Alden party that mapped a 294 

Tarlatt portage (Hydrographic party under the command of Cmdr James Alden 1855) hosted 295 

Cooper aboard their survey steamer from Shoalwater Bay to San Francisco Bay (Cooper 1856:47 296 

1/2). James Gilchrist Swan (1857:77, 323), residing at the mouth of the Querquelin (now Bone) 297 

River, paddled upstream past places where dead redcedar still stand in tidal marshes (Figure 5c).  298 

Lowell, the GLO contractor, pinpointed two redcedar trunks along another tidal creek. 299 

Between 12 September and 2 November 1855—with a crew of four chainmen, two axemen, and 300 

a compassman—Lowell subdivided terrestrial parts of T. 13 N., R. 10 W. into mile-square 301 

sections (location, Figure 4a; Lowell 1856a). Chaining northward in forest along the line 302 

between sections 34 and 35 (line, Figure 5c), the crew emerged onto “marsh land” traversed by a 303 

tidal slough—today’s South Fork Palix River, a serpentine arm of Willapa Bay (Figure 5c). On 304 
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this line the quarter-section corner coincided with the slough. The crew set a witness post on the 305 

south bank, from which they measured bearings and chained distances to two trees identified as 306 

“Cedar.” One of these bearing trees was described as 76 cm in diameter, 17 m distant at N 70º 307 

W; the other, 91 cm across, 22.7 m away at S 43º E (dimensions converted here from inches, 308 

chains, and links). The crew continued chaining the section line northward across additional 309 

marsh to a forest edge where trees changed from dead to living: “Leave bottom land and enter 310 

green timber” (Figure 5d).  311 

A modern surveyor, R.E. Zenkner (2004), recovered the site of Lowell’s witness post and 312 

identified remains of both its bearing trees. Zenkner described the northwest tree as reduced to a 313 

“root collar” and the southeast one as a “cedar stump (no visible scribe) badly decayed.” In 2020 314 

we could not relocate the collar, but we did find a moss-covered, waist-high mound of rotten 315 

redcedar 22.7 m S 43º E from a Zenkner monument.  316 

Drowned spruce 317 

Four nineteenth-century records locate stumps, probably all Sitka spruce, in tidelands of 318 

the Columbia River estuary. First is a Cooper journal entry about ascending the tidal Wallacut 319 

River (location, Figure 4a): “In the banks of the creek are frequently seen stumps ‘in situ’ 320 

showing that it was once thickly timbered” (Cooper 1853–1854:75). 321 

The next two documents are the Rockwell topographic sheets T-1112 and T-1123, 322 

surveyed in summer and autumn (Rockwell and Sengteller 1868b, 1868a, Stenzel 1972:27). 323 

These maps delineate a high-water shoreline where sparsely wooded tidal marshes adjoin tidal 324 

flats of Youngs Bay (Figure 6). Beside parts of this shoreline, Rockwell flecked the tidal flat 325 

with unexplained, radiating symbols. Figure 6b, on a base map from 1805–1806, summarizes the 326 

extent of these symbols, and Figure 6c reproduces examples. The symbols imitate, in plan view, 327 

modern examples of exhumed spruce stumps that retain horizontal roots meters long, and which 328 

have fallen from banks eroded by waves of Youngs Bay. Viewed at ground level, some of these 329 

stumps retain roots anchored in a buried forest soil exposed near the mouth of the Lewis and 330 

Clark River (Figure 6d). Northeast of there, along the nearest 0.5 km of Youngs Bay shore, 331 

Rockwell’s radiating symbols coincide with spruce stumps that sprawl in July 2014 imagery on 332 

Google Earth. The symbols also coincide with shores where erosion later carried away 333 

triangulation stations of 1868 (Stenzel 1972:46–50). Sprawl typifies root systems of Sitka spruce 334 

where drainage is poor (Fraser and Gardiner 1967: plates 5–7, 18). 335 

The fourth and latest document is a feature article about diking and farming of tidal 336 

wetlands west of Astoria (The Pacific Farmer 1888). Its unnamed author asserts “indisputable 337 

evidence that an old forest of spruce ages ago grew where this tide land now is, along the west 338 

side of Young’s bay”—the floor of this bygone forest having dropped four feet “through some 339 

convulsion of nature.” 340 

Spruce decay probably explains why none of these Columbia River stumps were 341 

described or drawn as tall. Cooper (1860:22) described Shoalwater Bay ghost forests as redcedar 342 

“only.” Today along the Bone River, subfossil spruce roots jut out from tidal-creek bank (Figure 343 

5a) below a brackish marsh above which only redcedar extend (Figure 5b). 344 

The Lewis and Clark Expedition, though attuned to submerged forests upstream along the 345 

Columbia River (O’Connor 2004:402–405, Reynolds et al. 2022), recorded no subfossil trees at 346 

Youngs Bay during the winter of 1805–1806. The Expedition had no mandate to map tidal flats 347 

and “peculiar features” upon them, nor opportunities to observe tidal flats during low daylight 348 
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tides of summer and autumn (tides hindcast at NOAA/NOS/CO-OPS (2023)). But the Expedition 349 

did record hints that a successional clock in the Columbia River estuary had recently been reset. 350 

“Marsey prairie” 351 

One such hint can be seen in descriptions of vegetation south of Youngs Bay. 352 

Reconnoitering by canoe on November 30, 1805, Lewis found a plain “marshey and untimbered 353 

for three miles back” (Lewis et al. [1803–1806] 2005:codex Ia)—a “Marsey prairie” stippled on 354 

an accompanying map (Figure 6a). Clark extended such a stipple southward past Fort Clatsop 355 

(Figure 6b). Neither captain recorded any counterpart to Rockwell’s radiating symbols. But both 356 

captains recorded evidence that post-earthquake succession had reached a tidal-marsh stage 357 

within the first 100 years after 1700 (Figure 2c). 358 

Observations in later Chinookan surveys compare pre-earthquake vegetation with post-359 

earthquake vegetation. Cooper (1853–1854:75), along the tidal Wallacut River, contrasted lands 360 

“once thickly timbered” with adjacent tidal meadows having “scattered spruce trees of perhaps 361 

20 years growth” (Figure 2d). Rockwell plotted asterisks—a standard Coast Survey symbol for 362 

conifers (Thomas 1983:4)—not just along the Wallacut (Rockwell 1869) but also in some of the 363 

tidal wetlands south of Youngs Bay that adjoin his radiating symbols. 364 

“A distinct species” 365 

A 1700 Cascadia earthquake may have occasioned Lewis’s ([1803–1806] 2005) two-fold 366 

division of Sitka spruce near Fort Clatsop—into upland old growth (his tree “No. 1”) and a 367 

bottomland species (“No. 7”). 368 

Tree No. 1 enters Lewis’s journal for February 4, 1806 as the first of “sveral species of fir 369 

in this neighbourhood which I shall discribe as well as my slender botanicall skil will enable 370 

me.” 371 

[It] grows to immence size; very commonly 27 feet in the girth six feet above the surface of the 372 

earth, and in several instances we have found them as much as 36 feet in the girth or 12 feet 373 

diameter perfectly solid and entire. they frequently rise to the hight of 230 feet, and one hundred 374 

and twenty or 30 of that hight without a limb.  375 

Tree No. 7, recorded two weeks later, is “a species of pine peculiar to the swamps and 376 

marshes frequently overflown by the tide.” It resembles No. 1 in most respects and its cone, as 377 

sketched by Lewis, is unmistakably Sitka spruce. But it “seldome rises to a greater hight than 35 378 

feet and is from 2½ to 4 feet in diameter.” And “as this is a distinct species I shall call it No. 7.”  379 

Environment alone, irrespective of earthquake history, produces spruce variants. Where 380 

tidal, Sitka spruce has gangly limbs (Figure 6d) that give the tree a distinctively “sprawling, 381 

open-growth” look (Franklin and Dyrness 1973). Still, a 1700 Cascadia earthquake may have set 382 

No. 7 apart—whether through survival of pre-earthquake spruce, youth of post-earthquake 383 

spruce, or both. 384 

Where already “2½ to 4 feet in diameter” in 1806, No. 7 may have included pre-385 

earthquake Sitka spruce that post-1700 tides had yet to kill. Such trees would have been siblings 386 

of the few earthquake survivors in some of those same remnant tidal forests to the north and east 387 

(Figures 2e, 4d). Most may have adventitious roots, as judged by survivors’ root systems 388 

exposed in the 1990s by bank erosion along the Columbia River at Price Island (Atwater et al. 389 

2015:97). These showed dead roots nearly 1 m deep near a buried 1700 ground surface, as well 390 
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as live roots near the modern ground surface (Atwater 1994:10, 48). The live roots had evidently 391 

sprouted into post-earthquake deposits. Picea elsewhere has produced adventitious roots from 392 

trunks surrounded by debris-flow deposits (Strunk 1997) and from cuttings planted commercially 393 

(Ragonezi et al. 2010). 394 

Young spruce of in freshwater tidal forests undoubtedly adjoined upland old growth 395 

upstream of Fort Clatsop, before logging. Freshwater tidelands of the Copalis River, Grays 396 

Harbor, Willapa Bay, and the Columbia River estuary all display post-earthquake spruce that had 397 

become established before the time of the Lewis and Clark Expedition (Figures 2d, 4d; Benson et 398 

al. 2001). 399 

Raised shell beds 400 

Did Cooper know of land-level changes that happened suddenly? Coastal uplift that 401 

accompanied Chilean earthquakes in 1822 (Graham and Greenough 1835, Kölbl-Ebert 1999, 402 

Thompson 2012) and 1835 (Darwin 1839:379, FitzRoy 1839:412–414). Did Baird’s naturalist’s 403 

club discuss those findings while Cooper was on hand in 1857–1860?  404 

Whatever he knew of land-level changes in Chile, Cooper invoked nothing sudden to 405 

explain the redcedar submergence at Shoalwater Bay. To the contrary, in the railroad report 406 

(much as in the 1856 manuscript) he proposed “a gradual, slow sinking of the land (which seems 407 

in places to be still progressing, and is perhaps caused by the undermining of quicksands)” 408 

(Cooper 1860:22). But he also anticipated that “continued and careful examination of [the 409 

submerged redcedar] may afford important information as to the changes of level in these 410 

shores.”  411 

Here the railroad report turns to an apparent contradiction: “beds of marine shells” 412 

exposed in bluffs overlooking Shoalwater Bay. Gibbs ([1854] 1855:466), on a geological 413 

reconnaissance for Stevens, had noticed these beds and had interpreted them as uplifted. In 414 

Gibbs’s footprints, Cooper (1853–1854:87) reexamined shell beds near the site of modern Bay 415 

Center (location, Figure 5c). He found that the shells were “mostly of existing species,” and he 416 

estimated that they had been “elevated about 10 ft. above the present high tides.”  417 

Today, the emergent shells near Bay Center can be seen as fully compatible with 418 

submerged redcedar forests nearby, for two reasons. First, the shells underwent little if any net 419 

change in elevation if deposited when sea levels were about as high as they are today. Twentieth-420 

century geologists assigned these fossils to Pleistocene ancestors of Willapa Bay (Clifton 421 

1983:367). The shells contain mixes of right-handed and left-handed amino acids consistent with 422 

ages in the range 90,000–170,000 years (Kvenvolden et al. 1979:1517, 1519) or close to 80,000 423 

years (Kennedy et al. 1982: their locality 7). These ages are consistent with net uplift in the 424 

approximate range 0–40 m. Second, to end up near present sea level, the shells could follow a 425 

sawtooth trajectory through repetitions of the subduction cycle in Figure 2f—falling during 426 

earthquakes but rising in between (Atwater and Hemphill-Haley 1997:8–11). Subsidence during 427 

subduction earthquakes may then negate, in the long run, most of the gradual uplift that takes 428 

place between them.     429 

Conclusions 430 

Nineteenth-century explorers and immigrants recorded subfossil trees today interpreted 431 

as victims of a 1700 Cascadia earthquake. Western redcedar standing in tidal marshes of 432 

Shoalwater Bay struck a naturalist as incongruous and provided a land surveyor with bearing 433 
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trees. Sitka spruce, more prone to decay, had already been reduced to short stumps when 434 

observed along the Columbia River. These various remains of tidally drowned forests record 435 

lowering of land during a great subduction earthquake in 1700—a modern interpretation partly 436 

founded on analogy with estuarine effects of an Alaskan earthquake in 1964.  437 

In Cascadia as in Alaska, drowning by post-earthquake tides helped rebuild land on 438 

which new trees became established. Along the Columbia River, a plain described in 1805 as 439 

“untimbered” had become lightly wooded another half-century later.  440 
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Table 840 

TABLE 1.  Radiocarbon ages of rings of a dead spruce root collected in 1991 from a receding 841 

bank of Twentymile River near Portage, Alaska (Figure 3). 842 

Ring 

(Figure 

3c) 

Lab 

number 

(OS-) 

Fraction 

modern 

(FM) 

FM 

error 

Year if 

ring A 

formed in  

1963 C.E. 

Age on rising limb 

of bomb-carbon 

curve (Figures 3f 

and 3g) 

Age on falling limb 

of bomb-carbon 

curve (Figure 3g) 

A 159632 1.8272 0.0043 1963 1963.47–1965.53 

(age range crosses curve crest, 

partly on each limb) 

B 159633 1.3914 0.0041 1962 1962.41–1962.86 1973.94–1975.95 

C 159634 1.2362 0.0025 1961 1959.26–1961.98 1982.14–1984.99 

D 159635 1.2324 0.0025 1960 1959.25–1961.97 1982.17–1984.88 

E 159636 1.2879 0.0026 1959 1959.43–1962.18 1979.12–1980.81 

F 159637 1.1449 0.0024 1958 1957.79–1958.41 1990.32–1993.07 

G 159638 1.0774 0.0021 1957 1956.92–1957.35 2001.11–2004.97 

 843 

Notes 844 

Age ranges in the two columns at right are at two standard deviations and were computed at 845 

http://calib.org/CALIBomb/ with calibration data of Hua et al. (2013: Table S3a, NH zone 1) and 846 

Hammer and Levin (2017). Rings A–G, as annual increments of growth (Figure 3c), increase in 847 

tree-ring age in successive one-year steps, in which case their corresponding radiocarbon ages 848 

plot uniquely on the rising limb of the bomb-carbon curve in Figure 3f; the collection year (1991; 849 

Figure 3b) excludes the falling-limb ages for rings F and G. The tabulated rising-limb age ranges 850 

for rings B, E, and F then require that ring A represent the 1963 growing season. All the ages 851 

were measured in 2021 and are previously unreported. 852 
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Figure captions 854 

Figure 1. Land-level changes during (a) the 1964 Alaska earthquake and (b) during 855 

earthquakes of the past few thousand years along the Cascadia subduction zone. Alaskan points 856 

digitized from Plafker (1969: plate 3). Cascadia compilation after Leonard et al. (2010).  857 

 858 

Figure 2.  Schematic views: (a–e) Forest death by coastal subsidence during an 859 

earthquake and subsequent forest renewal. (f) Land-level changes between and during 860 

earthquakes at a subduction zone. 861 

 862 

Figure 3. Dated spruce along Twentymile River near Portage, Alaska. (a) Setting on 863 

airphoto taken 1966. (b) Tree sampled dead in 1991. (c) Sanded cross-section of root subsampled 864 

for radiocarbon analysis (rings A–G). (d, e) Fringe of earlywood cells outside ring A. (f) 865 

Radiocarbon results plotted on graph of atmospheric radiocarbon activity excerpted from (g).  866 

Radiocarbon activity in (f) and (g) is expressed as fraction of modern, pre-bomb levels (F14C of 867 

Reimer et al. 2004). Root 14C data in (f), for rings A–G, from Table 1; 14C curve in (f) and (g) 868 

from Hua et al. (2013: Table S3a, NH zone 1) and Hammer and Levin (2017); bomb yield in (g) 869 

from Yang and others (2003). Airphoto in (a) from collection of A.T. Ovenshine; other photos by 870 

the authors. 871 

 872 

Figure 4. Maps of southwest Washington estuaries, locating (a) places cited in the 873 

text; (b) individual dead western redcedar whose death likely resulted from lowering of land 874 

during the 1700 Cascadia earthquake; (c) areas of multiple spruce stumps submerged at high 875 

tide; and (d) live Sitka spruce that either survived the 1700 earthquake or became established in 876 

the first century thereafter. Tree locations from compilations in Atwater (2020). Tree ages in (d) 877 

from Jacoby et al. (1997) and Benson et al. (2001).  878 

 879 

Figure 5. Dead trunks and stumps of western redcedar east of Willapa Bay. 880 

Examples in (a) and (b) from a salt marsh along the Bone River. Oblique airphoto in (b) from 881 

Washington Department of Ecology (2016). (c) Mapped distribution along Bone River and South 882 

Fork Palix River. (d) Bearing trees near South Fork Palix River surveyed 1855 (Lowell 1856a). 883 

 884 

Figure 6.  Wetlands beside Youngs Bay. (a, b) Maps by Meriwether Lewis (Lewis et 885 

al. [1803–1806] 2005: codex Ia) and William Clark (1806: images 1008620 and 1008624), 886 

respectively; typed labels and stump symbols added. (c) Map by Rockwell and Sengteller 887 

(1868a), illustrating radiating symbols on tidal flat that probably represent spruce stumps. (d) 888 

Modern exposure of stumps on and beside tidal flat near mouth of Lewis and Clark River. Index 889 

map in Figure 4c.   890 
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