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Abstract  21 

Lake surface temperature (LST) is one of the key indicators required for ecological and hydrological 22 

studies and for water quality management. Satellite remote sensing of LST has high spatial and temporal 23 

coverage and can be a cost-effective method of monitoring lakes. This study explores geophysical factors 24 

that control LST. LST for one hundred and fifteen reservoirs in the Columbia River basin were studied 25 

from 2000-2022. The climatic factors like air temperature, vapor pressure deficit and surface specific 26 

humidity were found to be drivers that can explain up to 80% of the variability observed in LST. 27 

Precipitation, wind speed, wind direction, and lake bathymetry along with the lake’s elevation appeared to 28 

have negligible influence on the temporal variability of LST for these Columbia basin reservoirs. Our 29 

study revealed that there is an overall increasing trend in LST. Surfaces of two-third (66%) reservoirs are 30 

warming up with a mean rate of 0.25 oC/decade while the remaining reservoirs are cooling with mean 31 

yearly trend of 0.16 oC/decade. The surfaces of reservoirs with smaller surface area and located at low 32 

elevations were found to be warming fastest whereas the surfaces of those reservoirs at higher elevation 33 

have cooling trend, especially if they have large surface area. The trend of LST of a reservoir was found 34 

to be insensitive to the depth of these reservoirs. Using the vantage of space and multi-decadal 35 

observations, this study presents a thorough overview of the thermal behavior of reservoir water surface 36 

in the Columbia River basin. The findings can build clear pathways to improving hydro-ecological studies 37 

and water management of the region that is drought prone and impacted by climate change. 38 

Key words: Lakes, temperature, remote sensing, Columbia river, climate change. 39 

Key points:  40 

1.  According to multi-decadal remote sensing data of surface temperature, 76 out of the 115 reservoirs of 41 

Columbia river basin are warming yearly with a mean rate of 0.25°C/decade, while the remaining 42 

reservoirs show a cooling yearly trend with a mean rate of 0.16°C/decade. 43 



Minocha S, Wang P-H, Khan S, Hossain F. 2024. Factors influencing lake surface temperature 
and its trend analysis for reservoirs of the Columbia River Basin. Northwest Science 97(4): in 
press. 

Note: This article has been peer reviewed and accepted for publication in Northwest Science. 
Copy-editing may lead to differences between this version and the final published version. 

3 

2. Reservoirs with smaller surface area at low elevations are warming with high rates while many large 44 

area reservoirs at high elevations appear to have a cooling trend. 45 

3. Climatic factors like air temperature, minimum and maximum temperature, and vapor pressure deficit 46 

have a larger influence on LST as compared to reservoir parameters like depth, surface area and elevation 47 

of a reservoir.  48 
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Introduction  49 

Lakes and reservoirs are one of the major sources of freshwater for humans. They are used to meet demand 50 

for water supply for drinking, industry, and irrigation purposes. Such surface water bodies replenish the 51 

groundwater and preserve the aquatic habitat of that area. Reservoirs, which are artificially managed lakes, 52 

can mitigate floods and droughts by storing large amounts of water. Climate change also has a severe impact 53 

on the freshwater aquatic ecosystems. Thus, lakes and reservoirs can be used as indicators of a limnological 54 

response to change climate (Sharma et al., 2007). Lake surface temperature (LST) is one of the key 55 

parameters that affects the function of the freshwater ecosystems (Sharaf et al., 2019). LST is an important 56 

index that influences physical, chemical and biological processes in the water bodies (Dörnhöfer and 57 

Oppelt, 2016). Hereafter we shall use the terms lakes and reservoirs to refer to artificially managed lakes 58 

as the focus of this study is on reservoirs. We will use the term lake surface temperature (LST) to define 59 

the surface temperature of reservoirs. 60 

  61 

The traditional method of measuring LST is to install temperature probes and measure the temperature on 62 

site. Satellite remote sensing can also be used to estimate LST. The brightness temperature detected by 63 

passive radiometers on satellites represents radiance emitted in the thermal or microwave wavelengths. 64 

Because surface water has a near-one emissivity at those wavelengths, the brightness temperature can be 65 

conveniently converted to kinetic and skin temperature. However, the water temperature beneath the surface 66 

does not remain the same as LST when there is thermal stratification of reservoirs (Elçi, 2008). Thus, 67 

satellite LST cannot be used to represent depth-averaged temperature that captures the thermal regime of 68 

the entirety of reservoirs. Nevertheless, due to convenience afforded by satellites in terms of multi-decadal 69 

observations with global coverage, satellite LST allows the exploration of spatial and temporal patterns of 70 

water temperature changes in reservoirs and how they are affected by geophysical factors. For example, 71 

LST of reservoirs may be potentially influenced by properties of reservoirs such as average depth, surface 72 

area and elevation with respect to sea level (Wetzel, 2001).  73 
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Meteorological factors, such as precipitation, wind speed, humidity are also potential drivers of change for 74 

LST (Sharma et al., 2008). Consequently, temporal variation in LST over decades can be linked to 75 

variations in these meteorological factors over time, which in turn correlate with shifts in climate patterns 76 

due to global warming. Today, we know very little about these factors and the role they may play in 77 

controlling LST in the Columbia River basin. Understanding of this role can improve reservoir operations 78 

for better eco-system health and water management outcomes in the region as artificial reservoir operation 79 

scheme plays a vital role in temperature stratification (Buccola et al., 2016; Yearsley et al., 2019).  80 

 81 

The aim of this study is three-fold: (1) identify which of the geophysical factors of a reservoir influence its 82 

LST; (2) quantify the relative influence of all factors (geophysical and meteorological); and, (3) quantify 83 

the long-term trend of reservoir LST as observed by two decades of satellite thermal record to understand 84 

the impact of climate change. This study aims to improve our understanding of the relationship between 85 

LST and physical and meteorological factors of reservoirs. Because satellite temperature observations of 86 

terrestrial water bodies are relatively underutilized (Malakar et al., 2018; Calamita et al., 2024) in the study 87 

of reservoirs for lake management, our study hopes to broaden the application of LST to hydro-ecological 88 

studies and water management applications (Zhang et al., 2023). For example, changes in fish count in 89 

lakes can be related with the changes in satellite based LST or knowledge of how air temperature affects 90 

LST can aid in predicting thermal stratification patterns within the reservoir, which is crucial for 91 

maintaining suitable conditions for aquatic life. Similarly, understanding the impact of wind speed on LST 92 

can inform decisions related to wind-driven mixing and nutrient cycling, which are vital for ecosystem 93 

health. 94 

Study Region 95 

The reservoirs located in the Columbia River basin were selected for this study. Columbia river basin is in 96 

the Pacific Northwest region of North America. Columbia River pours more water into the Pacific Ocean 97 
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than any other river in North or South America. The basin covers 668,000 km2 of drainage area. The basin  98 

exhibits diverse bioclimatic conditions, encompassing both wet and dry regions with varied hydrographs 99 

influenced by rain and snow. Wet winters and dry summers contribute to significant seasonal fluctuations 100 

in streamflow. Since the 1950s, extensive water management has been implemented through a network of 101 

over 60 large dams and reservoirs on major tributaries. These modifications aim to facilitate hydropower 102 

generation, flood control, irrigation, recreational activities, water supply, and the preservation of habitat for 103 

endangered fish species (Jones and Hammand, 2020). 104 

 105 

Climate change is anticipated to have repercussions on hydroelectric power generation, flood risk 106 

management, agricultural water supply, and ecosystems within the Columbia River Basin (Osborn, 2012). 107 

Although regional warming is an evident consequence of heightened greenhouse gas (GHG) concentrations, 108 

alterations in precipitation may vary significantly in direction and magnitude across different regions and 109 

seasons due to thermodynamic and dynamic factors (Seager et al., 2010). Additionally, anthropogenic 110 

activities are exacerbating hydrological drought in this region (Huang et al., 2016). 111 

 112 

To study the impact of changing climate on LST in the Columbia River basin, 115 major reservoirs were 113 

selected that are associated with large dam. The relationship of LST with the meteorological factors was 114 

analyzed. The selected reservoirs are shown in figure 1 with the Columbia River basin boundary. Geo-115 

location of reservoirs were extracted from Global Reservoir and Dam (GRAND) database (Lehner et al. 116 

2019). 117 

Data 118 

Data from three different sources were collected and combined for this analysis (Table 1). The first 119 

data source used in this study is reservoir data from the GRAND database (version 1.3) (Lehner et al., 2019) 120 

which includes reservoir physical properties (Lehner et al. 2011). The geophysical factors extracted from 121 
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this database were: depth in meters, surface area (hereafter referred to as ‘area’) in square Kilometers and 122 

elevation of the dam in meters. The second data source was the satellite-based LST time series data, which 123 

were collected by processing Landsat-7 and 8 thermal infrared band data (Jimenez-Munoz et al., 2008). 124 

The time series data for LST were collected for each reservoir spanning a two-decade period at a frequency 125 

of 16 days. The third data source was the meteorological data time series at a daily timestep from 126 

GRIDMET database (Abatzoglou, J.T. 2013). The data variables used are specified in Table 1. These three 127 

types of data were extracted for each reservoir site for the two-decade period from January 2000 to 128 

November 2022.  129 

The climate data from GRIDMET database was averaged over all the pixels inside the reservoir’s 130 

shapefile (obtained from GRanD) for each reservoir at a daily timestep. It was then matched to the remote 131 

sensing derived LST by using date. For those dates when LST was not available, the climate data was also 132 

discarded for unbiased analysis. 133 

LST was estimated using Landsat-7 and 8 optical and thermal infrared (TIR) imagery. For each 134 

image, the visible, thermal and near infrared bands were cropped according to the reservoir shape polygons 135 

(obtained from GRanD database) in Google Earth Engine (GEE) (Gorelick et al., 2017) and then, a cloud 136 

filter was applied using the cloud mask extracted from quality assessment data and using the GEE’s 137 

‘SimpleCloudScore’ algorithm (Donchyts et al., 2017; Gorelick et al., 2017; Wang et al., 2017; Bonnema 138 

et al., 2020 and Attiah et al., 2023). After applying the cloud filter 33,910 images were left which represents 139 

almost 57% of the entire dataset. Using Dynamic Surface Water Extent (DSWE) method for water 140 

classification, the pixels were classified as water or non-water (Jones, 2015). Single channel algorithm was 141 

used to estimate the surface temperature of each water pixel from the TIR brightness temperature (Jiménez-142 

Muñoz et al., 2008). This method involves applying the corrections for atmospheric effects. The 143 

atmospheric vapor content for calculation of the atmospheric functions was derived from National Center 144 

for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) 145 

Reanalysis data for days corresponding with sensing data of each Landsat image (Kalnay et al., 1996).  146 
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A 10-100 m negative buffer (based on the size of reservoir) was applied to remove the effect of 147 

mixing of lake pixels with land surface pixels (Attiah et al., 2023). The estimated temperatures were then 148 

averaged across all water pixels within the reservoir polygon shape to provide single average temperature 149 

estimate for the whole reservoir from a single time-stamped Landsat image. The estimates were averaged 150 

for each reservoir for overlapping time periods. Unrealistically high and low temperatures were 151 

automatically removed to get the final time-series of daily LST. This technique to extract LST from Landsat 152 

images has been widely adopted and validated by other studies (Simon et al., 2014; Sharaf et al., 2019; 153 

Bonnema et al., 2020 and Attiah et al., 2023).   154 

 155 

Methodology 156 

To understand the effect of different reservoir geophysical factors (depth, area and elevation) on 157 

LST, the statistical distribution of reservoirs with respect to each factor was analyzed using histogram plot 158 

(figure 2-a, b and c) and boxplot (figure 3-a, b and c). As most of the reservoirs have area less than 30 Km2 159 

(figure 3 b), the histogram plot of area on the log-scale was analyzed to better understand the distribution 160 

of area. Reservoirs were categorized into two groups based on each reservoir factor. The threshold for 161 

categorizing the reservoirs in case of each morphological factor (shown by dotted red line on the histogram 162 

plots) was selected close to medians rather than means so that each group had almost equal number of 163 

reservoirs. Reservoirs were categorized as ‘shallow’ for depths less than 20 m and ‘deep’ for depths greater 164 

than 20 m. Similarly, ‘small’ and ‘large’ reservoirs were divided with a threshold of 1 Km2 area and ‘high’ 165 

or ‘low’ elevation reservoirs were divided using a threshold of 800 m elevation above mean sea level. 166 

The Pearson correlation matrix was employed to quantify the linear relationships between different 167 

variables in the dataset. This matrix comprises a square array of correlation coefficients, each indicating 168 

the magnitude and direction of the linear relationship between pairs of variables. These coefficients were 169 

computed using the Pearson correlation coefficient, 'r,' which spans from -1 to 1. A positive 'r' value 170 



Minocha S, Wang P-H, Khan S, Hossain F. 2024. Factors influencing lake surface temperature 
and its trend analysis for reservoirs of the Columbia River Basin. Northwest Science 97(4): in 
press. 

Note: This article has been peer reviewed and accepted for publication in Northwest Science. 
Copy-editing may lead to differences between this version and the final published version. 

9 

signifies a positive linear relationship, whereas a negative value denotes a negative linear relationship 171 

(Kijsipongse et al., 2011).  172 

 173 

Analysis of Variance (ANOVA): 174 

Analysis of Variance (ANOVA) is a statistical technique that is used to determine if the means of 175 

two or more groups are statistically different from each other (Bewick, V. et al., 2004). ANOVA estimates 176 

F statistic by taking the ratio of variance between sample means and variance within the samples. If the p-177 

value associated with this F-statistic is less than 0.05 then the group means are statistically different with 178 

95% confidence. As ANOVA assumes that the underlying distribution of the dependent variable (LST) 179 

should be normally distributed, skewness of LST was also measured, and it was estimated to be -0.38. 180 

Negative skewness is also visible in the histogram plot of LST (figure 4a). Distributions with skewness 181 

between -0.5 to 0.5 can be assumed close to normal and symmetrical (Hatem et al., 2022). The following 182 

transformation was applied to make the LST more normally distributed so that the ANOVA results can be 183 

trusted.  184 

𝑋! = [(𝑀𝑎𝑥(𝑋) + 4.5) − 𝑋]
!
".$                                                  (1) 185 

 After transformation the skewness was reduced to 0.04 and the histogram of transformed LST looks 186 

more symmetrical (figure 4b). ANOVA test was performed for each reservoir factor with both the original 187 

LST values and the transformed LST values. 188 

Contribution Analysis (Dominance Analysis) 189 

To determine the influence of each morphological and meteorological factor, dominance analysis 190 

(Azen and Budescu, 2003) was performed. This method involves training multiple models using every 191 

conceivable combination of predictors (meteorological and morphological factors) to predict the dependent 192 

variable (LST). Subsequently, for each predictor, the models where that predictor is included are compared 193 

to those where it is excluded while keeping the rest of the predictors constant. The importance of that 194 

predictor is measured by estimating the increase in R2 when it is included in the model compared to when 195 
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it is not, keeping the rest of the predictors unchanged. Then this incremental R2 is averaged for all the 196 

instances of that predictor.  197 

The average incremental R2 is standardized to sum to 1 for all predictors and therefore can be 198 

considered as the relative contribution or importance of that predictor in predicting/influencing the 199 

dependent variable (LST). The python package called ‘dominance analysis’ was used in this study to 200 

perform contribution analysis. All the meteorological and morphological variables listed in Table 1 except 201 

latitude and longitude were used as predictors to predict the LST for all the reservoirs.  202 

Trend Analysis 203 

Theil-Sen Slope (Sen, 1968) is used to study the trend in LST over the past two decades from 2000 204 

to 2022. Theil-Sen slope is a non-parametric method of estimating the best fit line for a set of points. It is 205 

estimated by taking the median of the slopes of all the lines generated by considering all possible pair of 206 

points. It can be expressed by using equation 2 where xi and xj are the series data at time ti and tj and if n is 207 

the length of series data, then 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 (Yang, Yu and Luo, 2020). Theil-Sen slope estimation is a 208 

robust method which is insensitive to outliers and works great for climate data variables (Chervenkov and 209 

Slavov, 2019). 210 

𝑇𝑆	𝑠𝑙𝑜𝑝𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛	(!!"!"
#!"#"

)                                                           (2) 211 

Monthly, seasonal and yearly trend analysis was completed for each reservoir and its relationship 212 

with the different factors was analyzed. For monthly trend analysis, monthly mean LST time series was 213 

generated. Due to low temporal frequency of Landsat (16 days) and due to cloud cover, there were months 214 

where no LST was observed using satellite data. For instance, figure 5 shows the monthly LST at Yale lake 215 

(shown in figure 1). To overcome this issue, a gradient boosting-based machine learning model was trained 216 

on 90% of the monthly LST time series and all meteorological variables (monthly means) were used to 217 

predict the monthly LST (Wagle et al., 2020; Jia et al., 2022). The model was tested on the remaining 10% 218 

of the data. The trained model was used to estimate the missing values in the monthly LST time series. In 219 
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seasonal trend analysis, the seasons are defined as follows: Spring spans from March to May, Summer from 220 

June to August, Autumn from September to November, and Winter from December to February. 221 

The Mann-Kendall test (Mann 1945, Kendall 1975) is widely recognized as a prominent 222 

nonparametric technique for analyzing hydrological and meteorological time series data. One of the key 223 

strengths of the Mann-Kendall method is its applicability to time series that do not adhere to a specific 224 

distribution. Additionally, the method is advantageous due to its minimal susceptibility to extreme values 225 

(Khaneshan et al., 2014). The original MK test has been used to test the statistical significance of yearly 226 

trend of 115 reservoirs. 227 

Results 228 

The correlation matrix calculated to understand the correlation between the various morphological 229 

and climatic factors is shown in figure 6. The darker color shades show high positive or negative correlation 230 

and lighter shades show less or no correlation. Morphological factors have almost no correlation among 231 

themselves or with the meteorological variables. Climatic factors like minimum and maximum temperature, 232 

vapor pressure deficit and surface specific humidity have high correlation with each other which is 233 

expected. High correlation among these variables signifies that their influence on LST should be similar. 234 

Analysis of Variance (ANOVA): 235 

The results of the ANOVA test are summarized in table 2. The p-value for Depth is more than 0.05 236 

whereas for Area and Elevation the p-value is less than 0.05 which shows that the ‘large’ and ‘small’ 237 

reservoirs have statistically different mean LST. Similarly, ‘high’ and ‘low’ elevated reservoirs are 238 

statistically different from each other with respect to mean LST. Thus, depth of a reservoir does not affect 239 

LST whereas surface area of a reservoir and the elevation at which it is located do affect the LST of a 240 

reservoir.  241 

Contribution Analysis (Dominance Analysis) 242 

The incremental R2 for each meteorological and morphological factor is shown in figure 7a in the 243 

form of a bar chart. Maximum air temperature is one of the major factors that affects LST. Vapor pressure 244 
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deficit and minimum air temperature were also found to affect LST, which is intuitive.  The least affecting 245 

factors for LST were wind speed, wind direction and precipitation among the meteorological variables. All 246 

geophysical factors (depth, area and elevation) also have less influence on LST. This finding is in agreement 247 

with another study by Sharma et al. (2008) who reported that on a broader scale, lake surface temperature 248 

is influenced and affected largely by climatic factors rather than lake’s physical attributes. From figure 7b, 249 

it can be easily seen that more than 80% of LST is influenced by air temperature (minimum and maximum), 250 

vapor pressure deficit, surface specific humidity and downwelling surface solar radiation which have also 251 

high correlation among themselves. 252 

Trend Analysis 253 

The trained machine learning model had a mean absolute error (MAE) of 2.24°C on the test set. 254 

Figure 8 shows scatter plot of the predicted LST vs Actual LST for the 10% of the data that was not used 255 

for the training of the model. It shows that the model can explain the variability well and can be used to 256 

estimate missing values. Figure 9 shows that the trained model performs robustly in filling missing values 257 

for the monthly LST for the Yale Lake.  258 

Figure 10 shows Theil-Sen trend slope for yearly LST of one of the lakes (Green Peter Lake, shown 259 

in figure 1). In the same figure, 95% confidence interval for the slope is also shown. Similarly, the slope 260 

was estimated for every reservoir and for monthly, seasonal and yearly LST. For monthly trend analysis, 261 

boxplots of the trend slopes of shallow and deep reservoirs were plotted month wise (Figure 11a). No 262 

difference in trend was visible for the shallow and deep reservoirs which indicates that the LST trend is not 263 

controlled by the depth of the reservoir. Similarly figures 11-b and c show box plots for small and large and 264 

low and high elevated reservoirs respectively. The trend of surfaces of smaller reservoirs is to warm at 265 

higher rate during the summer months as compared to larger reservoirs. This is likely due to the thermal 266 

inertial of large and deep reservoirs that require more thermal energy to heat up. However, for the rest of 267 

the months surfaces of small and large reservoirs almost have similar trends. Surfaces of low elevation 268 

reservoirs are warming up at higher rate during summer months and at a lower rate during autumn months 269 
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whereas surfaces of reservoirs located at higher elevations are warming up during June with the highest rate 270 

and the rate of warming goes down from July. Thus, area and elevation have some influence on the LST 271 

trend.  272 

The trend distribution exhibits greater variability in the summer months, while it is more consistent 273 

during winter, indicating similar behavior among reservoirs during colder periods. Other studies conducted 274 

by Sahoo et al. (2011), Luo et al. (2019), and Yang et al. (2020) have also noted significantly higher rates 275 

of surface temperature change during the months of summer and autumn compared to months of other 276 

seasons. Increasing trends imply heightened evaporative loss during the summer season under continued 277 

climate change scenarios compared to those without climate change. 278 

LST trend variation with depth of the reservoir shows no clear pattern in figure 12a. Figure 12b 279 

however shows that the reservoirs at low elevations (denoted by small markers) warm up during summer 280 

and have a cooling trend in autumn whereas reservoirs in high elevation (denoted by large markers) have a 281 

warming trend during autumn. A better insight is gained on why reservoirs in eastern region of Columbia 282 

basin behave differently from western reservoirs. The reason behind this from a data based perspective 283 

seems to be due to the elevation difference, warranting further investigation in future research endeavors. 284 

Figure 13 shows the actual shape of reservoirs and the yearly trend seen in the last two decades. 285 

Most low elevation small reservoirs (towards west) are found to be warming whereas high elevation and 286 

small reservoirs (towards the eastern region) are cooling. Large reservoirs are also found to be warming. A  287 

yearly trend of warming is exhibited by 76 reservoirs at the mean rate of approximately 0.25°C/decade. The 288 

remaining reservoirs have a cooling trend of LST with the mean rate of approximately 0.16°C/decade. 289 

These trend rates align with those reported in prior studies conducted by Woolway et al. (2017), Wan et al. 290 

(2018), Dokulil et al. (2021), and Xie et al. (2022). 291 

Mann-Kendall test results on yearly trend revealed that 20 reservoirs out of 115 exhibited 292 

statistically significant trend with a confidence of 90% (figure 14). The mean rate of change in yearly LST 293 

for these 20 reservoirs is found to be approximately 0.34°C/decade. The uncertainty in the yearly trend is 294 
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least as comparable to the monthly or seasonal trend as yearly trend is calculated using yearly LST which 295 

is calculated as the average of monthly LST for all months in a year. Further, estimating the trend on a 296 

decadal scale reduces the MAE of 2.24°C in monthly LST to MAE of 0.019°C/decade in the yearly trend. 297 

Discussion and Conclusion 298 

This study provides a comprehensive analysis to demonstrate that remotely sensed lake surface 299 

temperature, even if it only represents the skin temperature of a lake, can still reveal insights on trends 300 

necessary to understand the impact of global warming at the local scale. For example, climate change can 301 

affect the characteristics of lake’s thermal stratification as more carbon dioxide in the atmosphere can 302 

increase the duration of thermal stratification (Stefan et al., 2001; Adrian et al., 2009; Yaghouti et al., 2023). 303 

Such studies can be done by studying the variation of LST as a proxy of climate change along with the 304 

depth averaged temperature of the lakes.  305 

Remotely sensed LST data though available globally, has a low temporal resolution which can be 306 

further reduced due to the presence of clouds. This inherent paradox (high spatial resolution but low 307 

temporal resolution) necessitates the understanding of the driving factors of LST so that a more continuous 308 

estimate of LST over time can be generated for a wide range of lake management applications. Our study 309 

helps better understand how surface temperature of reservoirs may be influenced by geophysical and 310 

meteorological factors, which in turn has implications for the proper functioning of aquatic ecosystems. 311 

Warmer reservoir temperatures can alter lake mixing regimes, availability of fish habitat and biological 312 

uptake of nutrients which purifies water and protects downstream ecosystems (Meyer et al., 1999; Petersen 313 

and Kitchell, 2001).  314 

What emerges from our study is that an increasing upward trend of lake surface temperature in 315 

most of the Columbia River reservoirs may be one of the direct effects of global warming as indicated by 316 

previous research (Schmid et al., 2014). A technical report published by US Army Corps of Engineers 317 

(O’Connor, 2021) found that a substantial portion, between 25 and 50%, of the observed warming trends 318 

in water temperature corresponded with rising air temperatures. Furthermore, contribution analysis 319 
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reinforces the significant impact of air temperature on LST, with minimum and maximum air temperatures 320 

combined explaining approximately 43% of the variance in LST. 321 

Out of the 115 reservoirs examined in the Columbia River basin, 76 of them exhibit a warming 322 

yearly trend in LST, with a mean rate of 0.25°C/decade, while the remaining reservoirs show a cooling 323 

yearly trend, averaging 0.16°C/decade. The yearly trends were found to be statistically significant for 20 324 

out of 115 reservoirs, warming with a mean value of 0.33°C/decade. The trends in LST appear to be 325 

influenced by the surface area and elevation of the reservoirs, factors that are closely associated with their 326 

impact on air temperature. Elevation directly influences air temperature variation, whereas surface area 327 

determines the extent of water-air interaction. Interestingly, reservoir depth does not appear to have any 328 

significant influence on LST trends. Reservoirs with small surface area or which are at low elevation tend 329 

to show higher positive LST trend during summer months (June-August) compared to reservoirs with large 330 

surface area, or which are at high elevation. In winter (December – February), all the reservoirs almost 331 

behave similarly and exhibit similar LST trends. Small reservoirs are overall warming yearly, with a higher 332 

rate for low-lying reservoirs as compared to higher elevated reservoirs whereas high elevated large 333 

reservoirs have an overall cooling yearly trend. 334 

This study, revealing the significant differences found in mean LST between reservoirs categorized 335 

by surface area and elevation, suggests that these factors play a notable role in influencing reservoir surface 336 

temperature. The lack of significance for reservoir depth implies that this variable may have less impact on 337 

LST compared to surface area and elevation. Moreover, the dominance analysis test highlights that depth 338 

explains the least variability in LST among all the meteorological and morphological factors considered. 339 

Lake surface temperature was found to be predominantly influenced by meteorological factors 340 

rather than lake bathymetry. Air temperature, vapor pressure deficit, surface specific humidity and 341 

downwelling surface solar radiation emerged as the topmost contributing factors for LST and they together 342 

explain 80% of the observed variation in LST. Conversely, wind direction, wind speed and precipitation 343 

were identified as the least influential climatic factors for LST explaining 0.73%, 0.57% and 0.47% of the 344 
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variability, respectively. Among the factors associated with reservoir bathymetry, surface area exhibited 345 

the highest variability (0.56%), followed by elevation of the reservoir (0.33%) and depth of the reservoir 346 

(0.074%).  347 

Our study highlights the efficacy of utilizing multi-decadal time-series of lake surface temperature 348 

(LST) from remote-sensing data to monitor evolving trends. These trends not only yield valuable insights 349 

into LST dynamics but also present opportunities to explore their implications for the hydro-ecological 350 

cycle. By correlating LST trends with ecological indicators like algae growth and fish population, we can 351 

deepen our understanding of ecosystem dynamics and inform more targeted water management strategies. 352 

For instance, identifying periods of elevated LST can prompt interventions aimed at reducing water 353 

temperatures through methods such as strategic water releases or the implementation of shading techniques. 354 

This approach contributes to the preservation of aquatic habitats and the sustainable management of water 355 

resources. Continued advancements in remote sensing based LST monitoring will further enhance our 356 

ability to assess the impacts of climate change on aquatic ecosystems. Additionally, future studies can 357 

explore the impact of factors like basin parameters and mean daily inflow in conjunction with LST.  358 
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Figure 1 : Columbia River basin as the study region and the 115 selected reservoirs. It also shows the geo-
spatial location of Yale Lake and Green Peter Lake that have been referred to in the text. 
 

 
Figure 2(a, b and c): Histogram for the reservoir depth, log(reservoir surface area) and reservoir elevation 
of 115 reservoirs in the Columbia River basin respectively. The red dotted line shows the value used to 
categorize each of the variables into two groups: (1) shallow and deep for depth, (2) large and small for 
surface area and (3) high and low for elevation. 
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Figure 3(a, b and c): Boxplot for the reservoir depth, reservoir surface area and reservoir elevation of 115 
reservoirs in the Columbia basin respectively. The green marker denotes the mean and orange line shows 
the median of the each of the variables. 
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Figure 4(a and b): Histogram for daily LST and transformed LST for 115 reservoirs respectively. 

Figure 5: Monthly mean LST time series for Yale Lake. Empty gaps show the missing data. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6: Correlation matrix showing Pearson correlation value between different 
morphological and meteorological variables calculated using all 115 reservoirs. 
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Figure 7 (a): Pie chart for percentage of relative importance of each meteorological and morphological 
variable in influencing LST; (b): Bar chart for Incremental R2 for each of these predictors using 
contribution analysis method. 
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Figure 8: Scatter plot of Predicted monthly LST vs Actual Monthly LST 
for test data that 10% of the total non-missing dataset 

Figure 9: ML model based monthly LST predictions (dotted curve) with comparison to the actual monthly LST 
values (blue curve) for Yale Lake. 



Minocha S, Wang P-H, Khan S, Hossain F. 2024. Factors influencing lake surface temperature 
and its trend analysis for reservoirs of the Columbia River Basin. Northwest Science 97(4): in 
press. 

Note: This article has been peer reviewed and accepted for publication in Northwest Science. 
Copy-editing may lead to differences between this version and the final published version. 

27 

 

 
 
 
 
 
 
 

Figure 10: Theil-Sen slope estimation with 95% confidence interval for yearly average LST for Green 
Peter Lake 
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Figure 11(a, b and c): Monthly LST trend for different months of the year and for 
deep/shallow, small/large and low/high reservoirs respectively. 
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12 (a) 

12 (b) 

Figure 12(a and b): Seasonal LST trend for deep/shallow and low/high reservoirs 
respectively. The marker size represents the actual depth or elevation of the reservoir. 
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Figure 13: Yearly LST trend for reservoirs with marker size representing the surface area of the 
reservoir. Larger the marker, larger is the surface area of the reservoir. 

Figure 14: Yearly LST trend for reservoirs that exhibits statistically significant trend with 90% 
confidence using Mann-Kendall test. 20 reservoirs out of 115 reservoirs had a statistically significant 
yearly trend in LST with a mean value of 0.34°C/decade. 
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Data Type Database Data Variable Abbreviation Time Duration 

Reservoir 
Morphological 

Data 

GRanD 
Database 

(version-1.3) 

Latitude lat NA 
Longitude lon NA 

Surface Area area / 
AREA_SKM  NA 

Elevation ELEV_MASL NA 
Depth DEPTH_M NA 

Reservoir Surface 
Temperature Data 

Satellite 
Remote 
Sensing 

Lake Surface Temperature LST Mar 2000 - July 2022 

Meteorological 
Data 

GRIDMET 
Database 

Near-Surface Specific 
Humidity sph Jan 2000 - Nov 2022 

Mean Vapor Pressure Deficit vpd Jan 2000 - Nov 2022 
Precipitation pr Jan 2000 - Nov 2022 
Minimum Relative Humidity rmin Jan 2000 - Nov 2022 
Maximum Relative Humidity rmax Jan 2000 - Nov 2022 
Minimum Air Temperature tmmn Jan 2000 - Nov 2022 
Maximum Air Temperature tmmx Jan 2000 - Nov 2022 
Surface Downwelling Solar 
Radiation srad Jan 2000 - Nov 2022 

Wind Speed at 10 m vs Jan 2000 - Nov 2022 
Wind direction at 10 m th Jan 2000 - Nov 2022 

 

Table 1: Description of various datasets and their variables used along with their sources and the time 
duration, if applicable.  

 
 

 

 

 

 Depth Area Elevation 
P value for LST before 
transformation 

0.740 1.365× 10−7 5.810× 10−4 

P value for LST after 
transformation 

0.562 5.742× 10−9 2.949× 10&' 

Table 2: Results of ANOVA test for Depth, Area and Elevation with dependent variable as LST and 
transformed LST. 


